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Summary. The Bending Corrected Rotating Linear Model (BCRLM), developed 
by Hayes and Walker, is a simple approximation to the true multidimensional 
scattering problem for reactions of the type: A + BC-->AB + C. While the 
BCRLM method is simpler than methods designed to obtain accurate three- 
dimensional quantum scattering results, this turns out to be a major advantage 
in terms of our benchmarking studies. The computer code used to obtain 
BCRLM scattering results is written for the most part in standard FORTRAN 
and has been ported to several scalar, vector, and parallel architecture computers 
including the IBM 3090-600J, the Cray XMP and YMP, the Ardent Titan, IBM 
RISC System/6000, Convex C-1 and the MIPS 2000. Benchmark results will be 
reported for each of these machines with an emphasis on comparing the scalar, 
vector, and parallel performance for the standard code with minimum modifica- 
tions. Detailed analysis of the mapping of the BCRLM approach onto both 
shared and distributed memory parallel architecture machines indicates the 
importance of introducing several key changes in the basic strategy and al- 
gorithms used to calculate scattering results. This analysis of the BCRLM 
approach provides some insights into optimal strategies for mapping three- 
dimensional quantum scattering methods, such as the Parker-Pack method, 
onto shared or distributed memory parallel computers. 
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1. Introduction 

In the last several years we have witnessed significant progress in the develop- 
ment of new methods for obtaining accurate state-to-state reaction cross 
sections for three atom systems [ 1-11]. While this progress has enabled the study 
of several real chemical reactions of interest, these computational studies re- 
quired significant computational resources. As a result, there remains a high level 
of interest in developing more powerful computational approaches to obtaining 
quantum scattering information. The most important component in this search 
for more effective computational methods will continue to be the discovery of 
better scattering methods and algorithms. However, the rendering of these 
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methods into efficient computer codes will require special attention, if we are 
to benefit from the enhanced capability of future generations of computer 
hardware. 

The purpose of this paper is to provide a progress report on our benchmark 
studies of the BCRLM reactive scattering code for several scalar, vector, and 
parallel architecture machines, and to discuss the implications of these studies for 
mapping three-dimensional quantum scattering methods, such as the Parker- 
Pack method (1) onto shared or distributed memory parallel computers. 

The Bending Corrected Rotating Linear Model (BCRLM), developed by 
Hayes and Walker [12], is a simple approximation to the true multidimensional 
scattering problem for reactions of the type: A + BC ~ AB + C. The BCRLM 
method is simpler than methods designed to obtain accurate three dimensional 
quantum scattering results. Yet the BCRLM method includes a number of the 
computational challenges presented by these accurate methods [1-11]. The basic 
approach we have adapted is to gain as much insight as possible from a 
thorough analysis and benchmarking of the BCRLM code and to use this 
experience to guide more effective implementations of three-dimensional meth- 
ods such as the Parker-Pack method. Since the computation times for a series 
of BCRLM calculations are modest (i.e., minutes on a Cray YMP), we have 
been able to execute numerous tests on a number of machines including the IBM 
3090-600J, Cray XMP and YMP, Ardent Titan, IBM RISC System/6000, 
Convex C-l, and MIPS 2000. We have found that having a series of test 
problems that can be executed without requiring a significant allocation of 
computer resources is a real advantage at this stage in our work since it enhances 
our ability to test various compilers, to evaluate the relative scalar, vector, and 
parallel performance of a machine and to obtain detailed performance statistics. 

2. BCRLM method 

2.1. Coupled equations 

The coupled-channel equations for the BCRLM method have been developed 
using both natural collision coordinates and hyperspherical coordinates [12]. In 
this study we have used the code based on natural collision coordinates because 
it is a more mature code, but the performance of either code is expected to be 
about the same for the test calculations reported in this paper. Since the details 
of the derivation of these equations have been reported elsewhere, we report only 
the final results from Ref. [ 12b]. 

In the natural collison coordinates, u and v, the basic equations in matrix 
form are: 

d 2 N 
J D.kgkm(U ) (1) ffffu2 gnm(U) = ~ J J 

k = O  

where the coupling matrix elements OhJm for each sector, (i), are: 

= V(u'; v) - V°(v; i) + - - ( J ( J  + l) + l) G~ )) 2#--rim 4a2 2#02 

+ [½(e~ + ~m) -- El (G~ ;) It/21G~,) ) (2) 
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Here u is the collision coordinate, v is a vibrational coordinate perpendicular to 
u, and J is the total angular momentum. The potential term V°(v; i) is the 
potential at the center of sector (i) and V(ui; v) is the full potential in sector (i) 
including the bending correction terms. We have suppressed the labels for J and 
the bending quantum numbers, 2. The functions G~ ° are obtained by solving the 
reference vibrational Hamiltonian defined at the center of each sector: 

~ v 2 +  V°(v;i) - e i  G(~ i) = 0  (3) 

The energy and angular momentum dependence of matrix elements defined 
in Eq. (2) can be written as follows: 

D~O(E) - (o -- D,m(Eref, J = 0) + (Ere f - E)A~n 0 + J(J + 1)B~/) m (4) 

where the energy and angular momentum independent matrices, A(~ and B(~ 
are given by: 

h 2 
A ~  = ~ (G(ff)ltlZlG~)) (5) 

and 
h 2 

B(~)~ = ~ ( G~i)lq2 0 - 2[G~) ) (6) 

To apply the appropriate boundary conditions for reactive scattering we also 
need the coupled equations in Jacobi coordinates, R and r: 

d 2 N 
dR2 fn~(R) = Z C.k Am(R) (7) 

k=0 

where the coupling matrix elements C,,, are: 
h 2 h 2 
2~ Cnm = ('~n -- E)(~nm -~- ( F n ] V ( R ,  r) - V°(r) + ~ ( J ( J  + 1) + 1)IF m ) (8) 

Here R is the distance from the separated atom to the center of mass of the 
associated diatomic molecule and r is the internuclear separation of the diatomic 
molecule. The potential term V(R, r) is the full potential in the asymptotic 
a tom-dia tom region and V°(r) is the asymptotic diatomic potential. The func- 
tions F, are obtained by solving the reference vibrational Hamiltonian: 

~ + V°(r) - e, F,  = 0 (9) 

The potential, V°(r), will in general depend on the particular arrangement 
channel (i.e., reactants or products) but we have suppressed the channel index in 
Eq. (9). 

2.2. Vibrational basis representations 

Equations (3) and (9) are solved by expanding the eigenfunctions in a set of 
harmonic oscillator functions, ~bn(i), that have been selected for each sector. 
While the matrix elements in Eqs. (2) and (8) may be solved efficiently in this 
representation, it is convenient to transform to the representation that diagonal- 
izes these equations, since this permits one to contract the basis set thus reducing 
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the order of the matrix to be propagated and, importantly, replacing a symmetric 
matrix with a vector containing the eigenvalues. 

At this point we can define Stage 1 of the BCRLM code. It consists of the 
following steps: 

- -  Generate the Primitive Basis Set, ¢(i). 
- -  Evaluate D(i)(Eref), A (i) and B (0. 
- -  Diagonalize D(0(Eref) and transform A (0 and B (° to the diagonal representa- 
tion. 

Each of these steps must be performed for all of the sectors in the natural 
collision coordinate representation and for the two asymptotic Jacobi arrange- 
ments corresponding to reactants and products. Since each of these operations 
can be carried out independently of all the others, this Stage 1 operation is 
ideally suited for parallel computation. 

2.3. Matching 

As the wavefunction is propagated from one sector to the next with the 
advancing natural collision coordinate, one must make certain that the wave- 
function and its derivative are continuous across the sector boundary. The key to 
meeting this requirement is the sector- to-sector  overlap matrix, [a(i, i + 1)],~, 
which is given by: 

[tr(i, i + 1)]nm = (Gn(v ; i)]G,,,(v; i + 1)) (10) 

With this overlap matrix we can easily enforce the sector matching by 
requiring that 

gR(i -- 1) = a(i, i + 1)gL(i) (11) 

and 

d g g ( i  -- 1) = tr(i, i + l)-~ugL(i ) (12) 
d 

where gR(i - -  1 )  is the value of the matrix of solutions to Eq. ( l )  at the right side 
of sector (i - 1), and gL(i) is the value of the matrix at the left hand side of 
sector (i). 

In matching to the Jacobi coordinate representation for the reactant and 
product channels the matching conditions are a bit more involved. At these 
matching boundaries we need the following two matrices: 

S(2~ = (Gn(r; N)1~ -~/2[Fm(r; N + 1) ) (13) 

and 
S(~2,)~ = (Gn(r; N)[tl '/2lFm(r; N + 1) ) (14) 

The asymptotic sector-to-sector  continuity is preserved as follows: 

gR(N) = S ( ° fL (N  + 1) (15) 

and 
d N d ~ g R (  ) = S ( 2 ~  fL(N + 1) (16) 

where N is the last of the natural collision coordinate sectors. 



Benchmark studies of the BCRLM reactive scattering code 203 

Now we can define the Stage 2 in the BCRLM code in terms of the following 
steps: 

- -  Determine the sector-to-sector overlap matrices. 
- -  Transform the overlap matrices to the local eigenfunction representation. 

Both of these steps must be carried out for each of the sector intersections, 
N, using Eqs. (13) and (14) for the final asymptotic entrance and exit channel 
matching and Eq. (10) for other sector-to-sector boundaries. There are three 
points that should be noted here. First of all each of these operations can be 
carried out independently of the others. Thus Stage 2 is also ideally suited for 
parallel computation. Moreover, if a distributed memory machine is to be used 
for both Stage 1 and Stage 2, the interprocessor communication between stages 
would be relatively low since the data required by any Stage 2 processor are 
generated by only two Stage 1 processors, and, importantly, in most instances 
these Processors can be arranged to be nearest neighbors. 

3. Solving the coupled equations 

3.1. R-matrix method 

The method selected to solve the coupled-channel equations is the R-matrix 
propagation method of Light and Walker [13]. The particular notation used here 
follows from Ref. [12b]. 

As noted in the previous section the coupling matrices D(i), Eq. (4) are 
calculated at the center of each sector and are assumed to be constant within the 
sector. Since the D(i) are real symmetric matrices, they may be diagonalized in 
each sector by a real orthogonal matrix U(i): 

Ur(i)D(i)U(i) = 22(0 (17) 

where ur(i) is the transpose of U(i). In each sector the propagation functions 
fnm(i) must be transformed to this locally diagonal representation giving the new 
propagation functions: 

] (R;  i) = U(i)f(R; i) (18) 

The global R matrix between the initial sector, 0, and sector i is: 

I f (R+ ;  i) LR3(i) Ra(i)_] L f'(R+; i) 

The sector R-matrix relating the values of the locally uncoupled functions to the 
derivatives within sector j is: 

R f  ; j ) J  Lr3(J) ra(j)JL f(R7 ;J) [ 

where for open channels (,~2~ 0) we have: 

[rl ( i )]nm = [r4( i ) lnm = (~nm[ - -  [ 2 n ( O 1 - 1  cot AR, 

[r2(i)],,, = It3 (i)],m = a,m [ -- 12, (i) 1-' CSC AR, [2n(i)I] 

(20) 

(21) 
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For closed channels (22/> 0) the sector R-mat r ix  is: 

[rl (i)]nm = [r4(i)]n,, = 6,m[12,(i)1-1 coth ARi 12,(01] 

[rz(i)],m = [r3(i)],m = 6,m[12,(i)1-1 csch ARi 12,(0 I] (22) 

In Eqs. (19) and (20) AR~ is the width of sector i. 
To propagate from sector (i) to sector (i + 1) we need to transform the 

sector- to-sector  overlap matrix, [o-(i, i + 1)],~, to the locally uncoupled repre- 
sentation of sector (i + 1): 

T(i, i + 1) = UT(i)~r(i, i ÷ 1)U(i ÷ 1) (23) 

The working R-matrix recursion relations are [12b] as follows: 

Rl( i  + 1) = R1 (i) - R2(i)T(i, i + 1)Z(i + 1)TT(i, i + 1)R3(i ) (24) 

R2(i ÷ 1) = R~(i  + 1) = R2(i)T(i, i ÷ 1)Z(i ÷ 1)r2(i ÷ 1) (25) 

R4(i + 1) = v4(i + 1) - r3(i + 1)Z(i + 1)r2(i + 1) (26) 

Z(i + 1) = [rl(i + 1) + TT(i, i + 1)R4(i)T(i, i + 1)] -1 (27) 

In the BCRLM code, we propagate all four blocks of the R-mat r ix  outward 
first towards the entrance channel and then towards the exit channel. The two R 
matrices are then combined and the scattering boundary conditions are enforced. 
The propagation of the coupled equations defines Stage 3 of the calculations. It 
is relatively straightforward to see that given the setup information from Stage 
1 and Stage 2 all of the energy calculations involve the same steps for each 
sector, namely: 

- -  Gather needed matrices from earlier stages. 
- -  Generation of the coupling matrix elements D(i). 
- -  Diagonalization of D(i). 
- -  Transformation of the matching matrix, a(i, i + 1). 
- -  R-mat r ix  propagation. 
- - T e m p o r a r y  Storage for the Asymptotic R-mat r ix  elements with E and J 
labels. 

Thus as we look at the feasibility of using various parallel architecture 
machines to perform numerous energy calculations there are a number of critical 
factors that must be assessed. In a shared memory environment, one can achieve 
high levels of parallelization by just assigning different energy and total angular 
momentum values to different processors, and, importantly the temporary 
storage for large numbers of matrices is straightforward. However, in a distri- 
buted memory environment it may be more efficient to assign one or more sectors 
to a particular processor and run the various energy ard  angular momentum 
calculations through the processors in a pipeline mode. This approach cuts down 
on the amount of interprocessor communication needed to gather the necessary 
matrices from the earlier stages, and, if the number of calculations needed is 
large relative to the number of processors, the percentage of time that there will 
be idle processors will be acceptable. Moreover, since the matrix elements that 
need to be moved to temporary storage all come from a single processor at the 
end of the pipeline, it is straightforward to pass the asymptotic R-mat r ix  
elements from that processor to external storage. In the near future we plan to 
test these assertions concerning operations in a distributed memory environment 
on the 32 node INTEL iPSC/860 machine at Rice University. 
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3.2. Boundary conditions 

For large values of R the coupled-channel equations (Eq. (8)) are decoupled 
and we have (ignoring an extra 1/~ 2 term): 

27D.m = e. - E + 2 - ~ ( J ( J +  1)) ann a (28) 

AS a result the scattering wavefunctions, f..~(R; J)  have the asymptotic form: 

f~m(R; J) ~ - ik.R[hSZ)(k.R)a.m + h51)(k.R)(km/k.) '/2SSm] (29) 

h k .  = 2/~(E - e.), S.Sm is an element of the where k. is the channel wavenumber, 2 2 
S-matr ix ,  and the functions h~ > are spherical Hankel functions of the first and 
second kind. To obtain the S-mat r ix  from the final R matrix we need Eq. (29) 
and its derivative in the form: 

f ( R ;  J) = IN(R; J) - OT(R; J )k  - l t2Sak 112 (30) 

f ' (R;  J) = IN'(R; J) - 0 T'(R; J )k  -1/2SSk a/2 (31) 

where the f ( R ;  J) and f ' (R;  J) matrices are determined by propagation into the 
entrance and exit channel asymptotic regions. The IN(R; J) and OT(R; J) are 
diagonal matrices of the spherical Hankel functions: 

[Or(R; J)].~ = ik.Rh~)(knR) (32) 

and 

[IN(R; J)].,. = [OT(R; J)]$nm (33) 

Letting R~(J)  be the final calculated R-mat r ix  for a particular value of the total 
angular momentum, J, following Ref. [12b] we may write down the expression 
for the S matrix in terms of R~(J):  

S ] = kl/Z[OT(J) - R~(J)OT'(J)][OT(J) - R~(J)OT'(J)]*k -1/2 (34) 

The integral cross section may be calculated from the S-matr ix  elements as 
follows: 

a.,.(E) = rck• 2 ~ (2J + 1)16.,. - SnS~ [2 (35) 
J = O  

In the last stage in the BCRLM code, Stage 4, we need to carry out the 
following operations for each energy: 

- -  Gather the R ~(J) matrices for each energy. 
- -  Determine Hankel functions and derivatives. 
- -  Generate S s matrices. 
- -  Calculate the integral cross section. 
- -  Output of the final results. 

For a typical scattering study we are interested in determining the integral 
cross section for numerous energy and angular momentum values. Here again 
one can achieve high levels of parallelization by assigning different energy and 
angular momentum values to different processors. The number of operations 
needed to gather the necessary matrices, R ~(J), will depend both on the strategy 
selected for S t a g e  3 and whether memory is shared or distributed. For a shared 
memory environment this step is relatively simple - at most requiring a simple 
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sort if all the matrices (J and E) are not available at once in core. However, in 
a distributed memory environment the gathering of the needed matrices and the 
communication to the appropriate processor is more involved, but it is still a 
relatively simple sorting process. 

4. Results and discussion 

4.1. Computer systems used 

To date we have obtained benchmark results using seven different computing 
systems. A summary of the characteristics of these systems is presented in Table 
1. For each system studied we have generated timings on a standard problem, 
the reaction F + H2--+ H + HF. The Muckerman 5 potential energy surface [14] 
is used to represent the FH2 interaction potential and the number of coupled 
channels is systematically varied from 5 to 30. For the comparison of scalar, 
vector, the parallel performance we have taken a relatively simple test case that 
consists of four energy calculations (i.e., E = 1.75, 1.65, 1.66, and 1.67 eV) for 
J = 0 .  

The IBM 3090 system used here is operated by the Cornell National 
Supercomputer Facility, CNSF. The Cray XMP and YMP machines are located 
at Los Alamos National Laboratory, and execute under the CTSS operating 
system. The Ardent Titan is owned by the T-12 Group at Los Alamos. The IBM 
RISC Systems/6000 is operated by the Bonner Physics Laboratory at Rice 
University. The Convex-1 is run by the Center for Research on Parallel Comput- 
ing at Rice University. All calculations were carried out between June 1, 1990 
and August 30, 1990. 

4.2. Code modifications 

The BCRLM code is based on the original RXN1D scattering code [15] with 
several modifications. The code has been modified in its physics content in two 
significant ways: (1) to solve the BCRLM equations, rather than those limited to 
collinear reaction events, and (2) to compute potential matrix elements over the 
harmonic oscillator primitive basis functions by an efficient Gauss-Hermite 
quadrature. Other cosmetic modifications to the code have been made to 
improve its portability between a variety of different computing environments, 

Table 1. Characteristics of computers used 

Machine Number of Operating FORTRAN Memory 
Processors System Compiler (MBytes) 

IBM 3090-600J 6 VM/XA Fortvs/pfpcomp 512 
Cray-XMP 4 CTSS CFT 1.16 512 
Cray-YMP 8 CTSS CFT 1.16 1024 
MIPS 2000 1 RISC/OS 6.0 F77 2.0 32 
Convex-1 1 Convexos 8.0 F77 6.0 64 
Ardent Titan 2 UNIX NFC 64 
RISC System/6000-530 1 AIX 3.0 xlf 32 
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particularly in the handling of  input and output functions. None of these 
modifications significantly affects how long it takes to do scattering calculations. 
Several obvious modifications were made to improve the computational per- 
formance of the code, and to improve its vectorizability. These modifications 
focus on the portions of  the code that perform the standard matrix algebra 
functions of  matrix addition, multiplication, inversion, and diagonalization. 
Wherever possible, inner DO loops in the original code were replaced with calls 
to the equivalent routines available in the Basic Linear Algebra Subroutines 
(BLAS routines). Wherever possible, imbedded loop structures were rearranged 
to improve the vectorizability or typical trip counts of the inner loop. The BLAS 
routine that performs most of  the matrix work is SAXPY (or DAXPY in double 
precision versions). 

To render the code in a form appropriate for parallel execution it was 
necessry to rewrite major sections of  the code to conform to the four stages 
outlined in the previous sections. The original code, which was designed for a 
serial environment, mixed the code for the four stages in such a way that it was 
not possible to unscramble them using normal compiler directives. In fact, early 
attempts to generate a code suitable for execution on the IBM 3090-600J without 
major code modifications produced code that actually ran slower in terms of 
both wall time and total CPU time. Thus, the code used to obtain timings for the 
parallel operation on the IBM 3090-600J, while it carries out the same operations 
and uses the same algorithms as for the serial and vector timings, has been fully 
segmented into the four stages that we presented above for parallel computing in 
a shared memory environment. At Stage 3 and Stage 4 each of the energies was 
assigned to a different processor. 

4.3. Scalar and vector comparisons 

While this study involves only 7 different machines, there are actually 11 different 
cases that we have investigated corresponding to different levels of scalar, vector, 
and parallel operations. The details of each of these cases are summarized in 
Table 2. 

Table 2. Cases studied 

Case Machine Processors Mode 
Label Used 

IBM-S IBM 3090-600J 1 Scalar 
IBM-V IBM 3090-600J 1 Vector 
IBM-P IBM 3090-600J 4 Parallel 
Cray-XS Cray-XMP 1 Scalar 
Cray-XV Cray-XMP 1 Vector 
Cray-YS Cray-YMP 1 Scalar 
Cray-YV Cray-YMP 1 Vector 
MIPS MIPS 2000 1 Scalar 
Conv Convex- 1 1 Vector 
Ardnt Ardent Titan 1 Vector 
RISC RISC System/600 1 Vectol -~ 

a While not a vector architecture, the RISC System/6000 machine performs 
best on codes that vectorize well 
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In Fig. 1, we compare the execution times for the three scalar cases. Then in 
Fig. 2 the vector cases are compared as a function of the number of coupled 
equations being solved for the IBM 3090 600J, and the Cray XMP and YMP. 
For each case in Fig. 2 we have used the optimized assembly language 
equivalents to the BLAS (Basic Linear Algebra Subroutines). In Fig. 3, for 
comparison purposes we present timings obtained using FORTRAN versions of 
the BLAS. There are significant improvements in performance due to the use of 
the machine language versions. In Fig. 4, we compare vectorized runs on the 
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Fig. 1. Scalar performance (CPU time) vs. number of coupled equations, N. See Table 2 for 
definition of case labels. Legend: (dots) IBM-S,  (solid line) Cray-XS, (dashed line) Cray-YS, (dash-dot 
line) MIPS 

Fig. 2. Vector performance (CPU time) vs. number of coupled equations, N, obtained using 
optimized assembly language versions of the BLAS. Legend: (dots) IBM-V, (solid line) Cray-SV, 
(dashed line) Cray-YV 

Fig. 3. Vector performance (CPU time) vs. number of coupled equations, N, using vectorized 
FORTRAN versions of the BLAS. See Table 2 for definition of case labels. Legend: (dots) IBM-V, 
(solid line) Cray-XV, (dashed line) Gray-YV 

Fig. 4. Vector performance (CPU time) vs. number of coupled equations, N, obtained using 
vectorized FORTRAN versions of the BLAS. Legend: (dots) Ardnt, (solid line) Conv, (dashed line) 
RISC 
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Table 3. CPU times in seconds as a function of N 

209 

Case N 
Label 

5 10 15 20 25 30 

IBM-S 6.0 14.0 33.0 63.0 106.0 173.0 
IBM-V 2.0 7.0 13.0 22.0 31.0 46.0 
Cray-XS 4.9 12.0 23.6 41.6 64.3 96.9 
Cray-XV 3.2 6.4 9.9 16.7 22.0 32.6 
Cray-YS 3.9 9.4 18.4 32.3 49.7 74.7 
Cray-YV 2.6 4.8 7.6 12.6 16.5 24.3 
MIPS 5.7 15.0 29.4 57.5 88.7 148.2 
Conv 23.2 57.7 105.5 179.5 235.5 262.4 
Ardnt 22.9 53.0 94.8 158.6 214.2 363.3 
RISC 4.4 9.1 15.0 28.1 40.6 61.5 

Table 4. Scalar to vector speedups as a function of N 

Case N 
Label 

5 10 15 20 25 30 

IBM-3090 2.0 2.0 2.5 2.9 3.4 4.4 
Cray-XMP 1.3 1.9 2.4 2.5 2.9 3.0 
Cray-YMP 1.5 2.0 2.4 2.6 3.0 3.1 

Fractional vectorization 

IBM-3090 0.60 0.61 0.69 0.75 0.79 0.86 

A r d e n t  Ti tan ,  and  the C o n v e x - l ,  with the R I S C  System/6000. In  each o f  these 
cases we have used F O R T R A N  vers ions  o f  the BLAS.  The pe r fo rmance  o f  the 
R I S C  System wi thou t  the special  machine  language  B L A S  is within a b o u t  a fac tor  
o f  two o f  the vector ized I B M  3090-600J, and  the Cray  X M P  and  Y M P  
pe r fo rmance  with  the machine  l anguage  BLAS.  

In Table  3 we present  the pe r fo rmance  o f  the var ious  cases as a funct ion o f  N. 
In  Table  4 we r epor t  the scalar  to vector  speedups  for  selected values o f  the 

to ta l  number  o f  coupled  channels  ob ta ined  for  the Cray  X M P ,  Cray  Y M P ,  and  
I B M  3090. Also  inc luded in this table  are  the simple A m d a h l ' s  law analysis  o f  the 
f ract ions  o f  the B C R L M  code tha t  are  vectorizable,  fv as de te rmined  by  ana lyz ing  
the t ime spent  in the vec tor  uni t  on the I B M  3090. F o r  N equal  to 30, the percent  
vec tor iza t ion  is 86%. 

4.4. Parallel results for the IBM 3090-600J 

We have modi f ied  the B C R L M  code extensively so tha t  it can be run in para l le l  on 
a shared  m e m o r y  para l le l  a rchi tec ture  machine .  W e  have carr ied  out  para l le l  test 
runs on the I B M  3090-600J at  the Cornel l  N a t i o n a l  Supe rcompu te r  Fac i l i ty  for  
each o f  the four  stages ind ica ted  in the prev ious  section. These p re l iminary  test 
runs indicate  tha t  there  is very litt le add i t iona l  overhead  associa ted  with  the 
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parallel execution - probably less than 1%. As a result we expect to be able to 
achieve speedups that are nearly linear with the total number of processors. We 
are not reporting detailed timing runs at this time because we are continuing to 
upgrade the new code and to make certain that its scalar, vector, and parallel 
performance has been optimized to the same extent. We expect to have these 
results in the near future. 

4.5. Implications of 3D reactions scattering calculations 

In this section we draw on our experience [16, 17] with the Parker-Pack 
Adiabatically-adjusting, Principal axis Hyperspherical (APH) coordinates ap- 
proach to obtaining accurate 3D scattering results [1]. While the Parker-Pack 
method involves many additional operations not encountered in the BCRLM 
approach, the basic idea of dividing up the computations into four separate 
stages carries over to this 3D approach without major modifications. 

To demonstrate this we need to review some of the basic equations from Ref. 
[ 1]. In the APH theory the total scattering wavefunction is expanded in a basis 
of sector adiabatic surface functions. These surface functions are bound state 
eigenfunctions of the surface Hamiltonian: 

H(O, Z; Q~)~,(0, Z; ~¢) = g,(~¢)~,(0, Z; ~¢) (36) 

where 0 and X are the two APH hyperangles. Equations (36) also depends 
parametrically on ~ ,  the center of a sector, where the range of the APH 
hyperradius is divided into n sectors, ~ = 1 , . . . ,  n. When the total scattering 
wavefunction is substituted into the full Schrrdinger equation for J = 0, a set of 
n coupled channel (CC) equations is obtained, where N is the number of surface 
functions (t = 1 . . . . .  N) in the CC expansion. These exact CC equations are 
propagated from E1 to Qn using the log-derivative method [ 18], then the boundary 
conditions are applied as usual [lb]. 

This first stage of the 3D calculations is by far the most time consuming and 
demanding of memory. For instance for our J = 0 study of the reaction 
He + H2 + ~HeH+ + H on the Ardent Titan, the first stage required about 90 
hours, the second stage about 10 hours, and the combined third and fourth 
stages about 8 minutes per energy after the first energy which requires about 16 
minutes. However, the total time involved in these Stage 3 and Stage 4 
calculations was nearly 48 hours, since nearly 350 energy calculations were 
needed to obtain the desired energy resolution over the energy range studied. 
Clearly we need significant improvements in computation speed. 

Shared memory environment. For a large shared memory parallel computer, 
typically with a modest number of processors, the Parker-Pack approach lends 
itself to high levels of parallel activity in very much the same way that we have 
outlined for the BCRLM code. Solutions to Eq. (36) may be obtained by 
dividing up the total number of sectors into groups of equal numbers (approxi- 
mately) of adjacent sectors so that each processor may be assigned about the 
same amount of work. Following this initial assignment, the surface function 
calculations can be carried out in parallel without generating any significant 
additional computational overhead. This approach has a possible advantage in 
that different techniques may be used for solving Eq. (36) in different regions of 
Q space. For the Parker-Pack approach there is some additional computational 
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overhead compared to the BCRLM code that is related to the larger sizes of the 
matrices involved in a 3D calculation. Since the number of surface function 
matrix elements is much larger than that encountered in the BCRLM code, one 
cannot keep all of these matrix elements for all of the sectors in main memory 
at the same time. However, by assigning a group of adjacent sectors to the same 
processor one can interleave the first two stages and then generate the sector- 
to-sector overlap matrices before it is necessary to move one of the adjacent 
surface functions to temporary storage. The only exceptions to this are for 
adjacent sectors that are assigned to different processors. The sector surface 
function matrices needed to calculate these particular sector-to-sector overlap 
matrices can be kept in main memory or retrieved from temporary files. The 
decision on whether to keep or retrieve these matrix elements will depend on the 
amount of main memory available and the size of the problem being solved. 

At the end of these first two stages we have the matrix elements needed for 
the propagation stage, Stage 3. Since these matrix elements cannot all be held in 
main memory at one time, for efficient propagation of the coupled equations 
they must be arranged in temporary file space so that they can be read 
sequentially from the lowest to the highest Q values as needed. If care is taken 
during the first two stages, this can easily be accomplished by creating two 
separate files for each group of sectors (i.e., one for the surface function matrices 
and another for the sector-to-sector overlap matrices). Then within each range of 
sectors all the matrices can be appropriately ordered. The propagation code then 
only needs to know the sector ranges assigned to each file. 

By assigning different energies to each processor for Stage 3 one can achieve 
high levels of parallel activity. An issue that comes up here is whether it is 
desirable to synchronize the timing among the processors so that each processor 
is working on the same sector during the same time period. If this is done, the 
number of file reads will be reduced by the number of processors used. The 
problem is that some processors will need to wait while others are finishing up 
work for the active sector. Since each of the processors is basically going through 
the same basic steps, the amount of time lost waiting will be a small percentage 
of the total compute time per sector. 

For Stage 4 the assembly of the asymptotic matrices needed to calculate the 
S matrix can be carried out in parallel fashion as in the case of the BCRLM 
code. Each processor just continues on from the Stage 3 calculations with the 
values of the asymptotic R-matrix elements and calculates the S-matrix for the 
assigned energy. 

Distributed memory environment. Here, we are most encouraged by the work of 
Kuppermann et al. [19]. Their important work, about which we expect to learn 
more at this Conference on Parallel Computing for Chemical Reactivity, has 
shown the wave of the future for distributed memory parallel computing. Using 
the Caltech/JPL Mark IIIfp 64 processor hypercube they have demonstrated that 
such a distributed memory parallel architecture machine can be competitive with 
single processor computation speeds on the Cray XMP, Cray II, and Cray YMP. 
To achieve this improved performance they adopted a different strategy from 
that presented here for the BCRLM code. The change is necessary because the 
3D hyperspherical treatment as implemented by Kuppermann's group, and by 
Parker and Pack requires many very large matrices to generate the surface 
functions for a particular sector. For example, the version of the Parker-Pack 
code that uses the Discrete Variable Representation (DVR) approach [20, 21, 22] 
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and a sequential diagonalization-truncation procedure [23] requires about 
50 Mbytes of memory for each sector. When the amount  of distributed memory 
associated with each of  the processors is less than this, it is necessary to 
distribute the operations for a sector over several processors. For  example, on 
the INTEL iPSC/860 at Rice University, which has 8 Mbytes per node, one 
would need to allocate seven or eight processors to each sector in order to have 
enough random access memory to write an efficient code. However, since the 
BCRLM code fits easily within 8 Mbytes, it is not necessary to allocate more 
than one processor to a sector during Stage 1 processing. 

The calculation of the sec tor - to -sec tor  overlap matrices, Stage 2, also 
requires considerable random access memory for efficient processing. As a result, 
several processors are also needed for this stage. Moreover, since this stage 
requires matrix elements from adjacent sectors it will be more efficient to 
interleave the first two stages so that the sec tor - to -sec tor  overlap matrices are 
calculated before one of the sector surface functions is moved to temporary 
storage (e.g., the concurrent file system on the INTEL iPSC/860). 

For  Stage 3 we note that the Kuppermann group [19] has obtained good 
results for this propagation stage by clustering processors in groups of eight and 
then assigning different energies to each cluster. The final stage of calculating the 
S matrix from the asymptotic values generated in Stage 3 is straightforward for 
parallel execution using the Kuppermann cluster approach [19], and is not very 
time consuming. 

Direct calculation of time delays. For chemical reactions that exhibit quantum 
resonances (long-lived complexes) there is considerable interest in being able to 
calculate the resonance lifetime. Smith [24] has shown that the scattering time 
delay, A t,~, may be calculated from the s t a t e - to - s t a t e  S -ma t r ix  elements, S,~, 
as follows: 

At,~ = Re[-ih(S,v)  -~ dS~v/dE] (37) 

where u and v are the initial and final set of quantum numbers for the 
s t a t e - to - s t a t e  process. While the scattering approaches discussed above provide 
the S -ma t r ix  elements directly at each energy, the energy derivatives must be 
determined separately. The traditional way to calculate the energy derivatives of 
the S - ma t r i x  is to calculate the S -ma t r ix  at many closely spaced energies and 
then find the energy derivatives by numerical differentiation. 

Recently it has been shown [17] that the Parker -Pack  method may be 
extended to include the direct calculation of the energy derivatives of  the 
S-matr ix .  The additional code to generate these energy derivatives at the same 
time as the S -ma t r i x  is being calculated has now been added to the Parker -Pack  
code [25]. Test results on Hel l ;  ~ indicate that the method is both accurate and 
efficient. Furthermore, the additional steps associated with this direct method fit 
well within the context of the parallel architecture approaches discussed above 
both for shared and distributed memory machines. For  systems with significant 
resonance structure this direct method offers a straightforward way to reduce the 
number of energy calculations required by as much as a factor of ten. 

The future. The prospect for future 3D quantum scattering studies is encourag- 
ing both for shared memory parallel computers such as the IBM 3090-600J and 
the Cray YMP 8]64, as well as for distributed memory parallel computers. It will 
be interesting to see if distributed memory parallel architecture machines such as 
the INTEL iPSC/860, with 8 Megabytes of memory at each of 128 nodes will 
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outperform shared memory machines operating in parallel. It will also be 
interesting to see if we are able to develop approaches that require less memory 
per processor and what the trade-offs will be between memory requirements and 
additional computing requirements. For 3D reactive scattering, memory may 
turn out to be dearer than computing power. 
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